Updates in CAR T-Cell Therapy

Alyssa Donadio, PharmD, BCPS, BCOP

Hematology/BMT Clinical Pharmacy Specialist Miami Cancer Institute Department of Pharmacy/Blood and Marrow Transplant Program AlyssaD@baptisthealth.net

Learning Objectives

- Discuss the current role of CAR (chimeric antigen receptor) T-cell therapies in the management of hematologic malignancies
- Review the evidence supporting the latest FDA approved CAR T-cell therapies in multiple myeloma
- Understand the management of toxicities associated with CAR T-cell therapies

FDA Approved CAR T-Cell Therapies: B-cell Lymphomas and Acute Lymphoblastic Leukemia

CAR T-cell Therapy	Abbreviation	Mechanism of Action	Indications
Axicabtagene ciloleucel (Yescarta)	Axi-cel	CD-19 targeted	Large B-cell lymphoma, relapsed or refractory Follicular lymphoma, relapsed or refractory
Brexucabtagene autoleucel (Tecartus)	Brexu-cel	CD-19 targeted	B-cell acute lymphoblastic leukemia, relapsed or refractory Mantle cell lymphoma, relapsed or refractory
Lisocabtagene maraleucel (Breyanzi)	Liso-cel	CD-19 targeted	Large B-cell lymphoma, relapsed or refractory
			Large B-cell lymphoma, relapsed or refractory
Tisagenlecleucel (Kymriah)	Tisa-cel	CD-19 targeted	Follicular lymphoma, relapsed or refractory
			B-cell acute lymphoblastic leukemia, relapsed or refractory (patients up to 25 years of age)

FDA Approved CAR T-Cell Therapies: *Multiple Myeloma*

CAR T-cell Therapy	Abbreviation	Mechanism of Action	Indications
Idecabtagene vicleucel (Abecma)	Ide-cel	BCMA targeted	Multiple myeloma, relapsed or refractory after ≥4 prior lines of therapy, including an
Ciltacabtagene autoleucel (Carvykti)	Cilta-cel	BCMA targeted	immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody

BCMA as a Target in Multiple Myeloma

BCMA is an antigen expressed predominantly on differentiated B cells

Higher expression on myeloma cells than normal plasma cells

Key role in B-cell maturation and differentiation

Promotes myeloma cell growth, chemotherapy resistance, immunosuppression in bone marrow microenvironment

Expression of BCMA increases with progression from MGUS to advanced myeloma

Pivotal Anti-BCMA CAR T-Cell Trials

	KarMMa	CARTITUDE-1
CAR T-cell agent	Idecabtagene vicleucel	Ciltacabtagene autoleucel
Study phase	II	lb/ll
Patient population	Adults with R/R Multiple Myeloma	Adults with R/R Multiple Myeloma
Number of patients treated (n)	128	97
Number of cells infused	150-450 M	0.75 M/kg
Population		
• Age, median (range) years	61 (33-78)	61 (43-78)
Number of prior lines of	6 (3-16)	6 (3-18)
therapy, median (range)		
Triple-refractory	84%	86%
Penta-refractory	26%	28%

Munshi NC, et al. N Engl J Med 2021;384:705–16. Berdeja JG, et al. Lancet. 2021;398(10297):314-324

Pivotal Anti-BCMA CAR T-Cell Trials

	KarMMa (n=128)	CARTITUDE-1 (n=97)
CAR T-cell agent	Idecabtagene vicleucel	Ciltacabtagene autoleucel
Overall response rate (ORR), %	73	98
Complete remission (CR), %	33%	80%
Progression free survival, median months	12.1	66% at 18 months

KarMMa Safety (idecabtagene vicleucel)

Advarge offects $p(0/)$	N=128		
Adverse effects, n (%)	Any Grade	Grade 3/4	
Hematologic (>25%) Neutropenia Anemia Thrombocytopenia Leukopenia Lymphopenia	117 (91) 90 (70) 82 (64) 54 (42) 36 (28)	114 (89) 78 (61) 67 (52) 50 (39) 35 (27)	
Gastrointestinal Diarrhea Nausea	45 (35) 37 (29)	2 (2) 0	

CRS	N=128
Any grade, n (%)	107 (84)
Grade ≥3, n (%)	7 (5)
Median onset, days	1
Tocilizumab use, %	52
Steroid use, %	15
Neurotoxicity	N=128
Any grade, n (%)	23 (18)
Grade 3, n (%)	5 (4)
Median onset, days	2
Median duration, days	3

CARTITUDE-1 Safety (ciltacabtagene autoleucel)

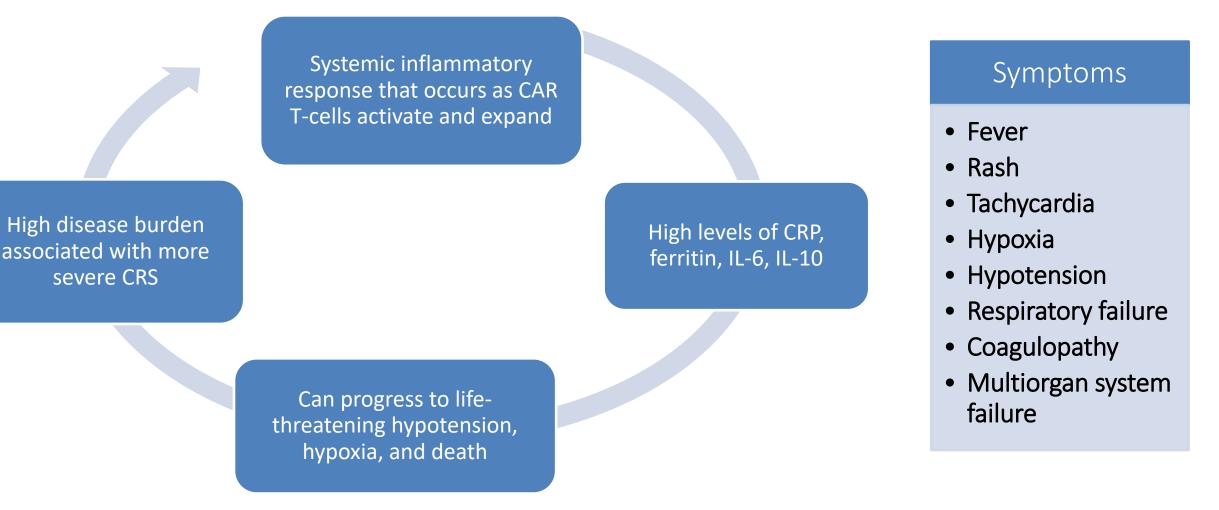
$\mathbf{A} \mathbf{d} \mathbf{v} \mathbf{o} \mathbf{r} \mathbf{o} \mathbf{o} \mathbf{f} \mathbf{f} \mathbf{o} \mathbf{c} \mathbf{r} \mathbf{o} \mathbf{r} \left(\frac{9}{2} \right)$	N= 97		
Adverse effects, n (%)	Any Grade	Grade 3/4	
Hematologic (>20%) Neutropenia Anemia Thrombocytopenia Leukopenia Lymphopenia	93 (96) 79 (81) 77 (79) 60 (62) 52 (54)	92 (95) 66 (68) 58 (60) 59 (61) 49 (51)	
Gastrointestinal Diarrhea Nausea	29 (30) 27 (28)	1 (1) 1 (1)	
Other AST increase ALT increase	28 (29) 24 (25)	5 (5) 3 (3)	

CRS	N=97
Any grade, n (%)	92 (95)
Grade ≥3, n (%)	5 (5)
Median onset, days (IQR)	7 (5-8)
Neurotoxicity	N=97
Any grade, n (%)	20 (21)
Grade 3, n (%)	9 (9)
ICANS (any grade), n (%)Median time to onset, days (range)	16 (17) 8 (6-8)
Other neurotoxicity (any grade), n (%) • Median time to onset, days (range)	12 (12) 27 (16-73)

Acute Toxicities of CAR T-cell therapy

Cytokine Release Syndrome (CRS)

Neurotoxicity


Tumor lysis syndrome (varies based on disease and disease burden)

Infection

Hemophagocytic lymphohistiocytosis (HLH)/ Macrophage activation syndrome (MAS)

Cytokine Release Syndrome (CRS)

CRS Management Principles

- Evaluate for and treat other causes of fever, hypoxia, and hypotension.
 - Assess for infection with blood and urine cultures and chest radiography
 - Empiric broad-spectrum antimicrobials should be considered as well as C-GSF if neutropenic
- CRS treatment modalities include the use of tocilizumab with or without corticosteroids
- Patients who experience Grade 2 or higher CRS should be monitored with continuous cardiac telemetry and pulse oximetry.
- For patients experiencing severe CRS:
 - Consider performing an echocardiogram to assess cardiac function
 - Consider intensive-care supportive therapy
- Monitor patients for signs or symptoms of CRS for 4 weeks after infusion

CRS Management: Tocilizumab

Mechanism	IL-6 receptor antagonist
Dosing	≥ 30 kg: 8 mg/kg < 30 kg: 12 mg/kg *Maximum 800 mg/dose
Administration	Give tocilizumab IV over 60 minutes +/- corticosteroids *DO NOT give subcutaneously for CRS
Frequency	Administer subsequent doses at least 8 hours apart as needed for CRS for maximum of 3 doses per 24 hours or 4 doses total

To remain compliant with FDA Risk Evaluation and Mitigation Strategy (REMS):

✓ 2 doses of tocilizumab must always be readily available

✓ Tocilizumab must be given within 2 hours of CRS symptom onset

Immune Effector Cell–Associated Neurotoxicity

Endothelium cell activation and leak into the central nervous system Endothelium cell cytok elevate cerebro fluid

Proinflammatory cytokines elevated in the cerebrospinal fluid (CSF)

Increased permeability of blood brain barrier Cytokines implicated include IL-6, IFNγ, and TNFα

Symptoms

- Encephalopathy
- Delirium
- Aphasia
- Headache
- Tremor
- Motor dysfunction
- Ataxia
- Psychosis
- Seizures
- Cerebral edema

Gust J, et al. Cancer Discov. 2017 Dec;7(12):1404-1419 NCCN Guidelines Version 1.2022. Management of Immunotherapy-Related Toxicities.

Neurotoxicity Management Principles

- Neurologic assessment and grading at least twice a day to include cognitive assessment and motor weakness
- Consider levetiracetam for seizure prophylaxis
- Rule out other causes of neurologic symptoms
- For Grade 2 or higher neurologic toxicities:
 - MRI of the brain with and without contrast (or brain CT if MRI is not feasible)
 - Conduct electroencephalogram (EEG) for seizure activity
 - Consider treatment with steroids
- For severe or life-threatening neurologic toxicities, provide intensive-care supportive therapy
- Monitor patients for signs and symptoms of neurologic toxicity/immune effector cellassociated neurotoxicity syndrome (ICANS) for 4 weeks after infusion

Additional CAR T-Cell Therapy Toxicities

- Prolonged cytopenias
 - Transfusions as indicated
 - G-CSF support as needed
- B-cell aplasia and hypogammaglobulinemia
 - Monitor IgG levels
 - Replete with IVIG for levels < 400 ug/L
- Infections
 - Provide antimicrobial prophylaxis per institutional protocols (HSV, PJP)
- Residual effects of acute toxicity
- Long-term effects
 - Secondary malignancies
 - Quality of life impairment: fatigue, memory issues

References

- 1. Cho S-F, Anderson KC and Tai Y-T. 2018. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 9:1821
- 2. Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021;384:705–16. <u>https://doi.org/10.1056/NEJMoa2024850</u>.
- Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet Lond Engl 2021;398: 314–24. <u>https://doi.org/10.1016/S0140-6736(21)00933-8</u>.
- 4. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188-195. doi:10.1182/blood-2014-05-552729
- 5. NCCN Guidelines Version 1.2022. Management of Immunotherapy-Related Toxicities.
- 6. Santomasso BD, Nastoupil LJ, Adkins S, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978-3992. doi:10.1200/JCO.21.01992
- 7. Gust J, et al. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017 Dec;7(12):1404-1419. doi: 10.1158/2159-8290.CD-17-0698.